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The damage spreadin@$S) transitions of two one-dimensional stochastic cellular automata suggested by
GrassbergefA andB) and the nonequilibrium kinetic Ising model of MenydgNEKIM) have been inves-
tigated. These nonequilibrium models exhibit nondirected percolation universality class continuous phase
transitions to absorbing states, exhibit parity conservatR® law of kinks, and have chaotic to nonchaotic
DS phase transitions, too. The relation between the critical point and the damage spreading point has been
explored with numerical simulations. For modglthe two transition points are well separated and directed
percolation universality was found both for spin damage and kink damages in spite of the conservation of
damage variables modulo 2 in the latter case. For madeid NEKIM the two transition points coincide with
drastic effects on the damage of spin and kink variables showing different time dependent behaviors. While the
kink DS transition of these two models shows regular PC class universality, their spin damage exhibits a
discontinuous phase transition with compact clusters and PC-like spreading exponents. In the latter case the
static exponents determined by finite size scaling are consistent with that of the spins of the NEKIM model at
the PC transition point. The generalized hyperscaling law is satisfied. Detailed discussion is given concerning
the dependence of DS on initial conditions especially forAheodel case, where extremely long relaxation
time was found[S1063-651X98)12605-3

PACS numbsg(s): 05.40:+], 64.60—i

[. INTRODUCTION DS transition since we can consider the difference of the
replicas as another dynamical system evolving by a complex

While damage spreadind@$S) was first introduced in bi- rule. According to the DP hypothesis—conjectured first in
ology [1] it has become an interesting topic in physics asthe early 1980§11,12—in the absence of conservation laws
well [2—4]. The main question is if a damage introduced in aevery continuous phase transition of a system with scalar
dynamical system survives or disappears. To investigate thisrder parameter and local interactions to a single absorbing
the usual technique is to make repligaof the original sys- phase would belong the universality class of the DP. There
tem and let them evolve with the same dynamics and extemre other more complex models such as those with several
nal noise. This method has been found to be very useful tabsorbing state§13] and multicomponent systemisl4],
measure accurately dynamical exponents of equilibrium syswhich exhibit the DP transition too. The DP universality
tems[5]. It has turned out, however, that the DS propertiesclass has been proven to be extremely robust. For a long time
do depend on the applied dynamics. An example is the casenly a few number of exceptions has been found, which do
of the two-dimensional Ising model with heat-bath algorithmnot belong to the DP class. These are the parity conservation
versus Glauber dynami¢6—8]. (PO models and the multiplicative noise systefi§].

To avoid the dependences on dynamics Hinrichseal. The first examples of the PC models were Grassberger's
[9] suggested a definition of “physical” family of DS dy- (A and B) stochastic cellular automat¢SCA) [16]. The
namics according to which the active phase may be divide#finks (00’s and 11'$ of these models exhibit mod 2 parity
into a subphase within which DS occurs for every member ofonservation and the absorbing state is doubly degenerated.
the family, another subphase where the damage heals féiollowing that a series of models in the same universality
every member of the family, and a third possible subphaselass have been discovered. In the case of the branching
where DS is possible for some members and the damagennihilating random walk with an even number of offspring
disappears for other members. The family of possible DSBAWe) [17,1§ the parity of the “particles” is conserved
dynamics is defined such that it is to be consistent with theind there is a single absorbing state. In the nonequilibrium
physics of the single replicagsymmetries, interaction Ising model with combined spin-flip and spin exchange dy-
ranges, etg. namics (NEKIM) [19,2Q the kinks have local parity con-

The universality of continuous DS transitions is an otherserving symmetry and the absorbing state is symmetrically
open question. There is a hypothesis raised by Grassbergdoubly degenerated. The three species monomer-monomer
[10], that damage spreading transitions generically belong t21] (3MM) and the interacting monomer-dim@gMD ) mod-
the universality class of directed percolati@®P) if they are  els[23,24] are multicomponent models with parity conserva-
separated from the ordinary critical point. This claim istions and symmetric absorbing phases.
based on the DP hypothesis applied for the absorbing type The common feature of these models that force them in a
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TABLE |. Summary of PC related models. The notatlorefers  variables with fluctuating replicas in the background. There-
to kink, s refers to spin, andh means external field as variable of fore the simple DP universality hypothesis cannot be applied

the model. here (although this does not exclude a DP class phase tran-
: : sition).
Model Abs. state  Dynamics ~ Univ.  Ref. no. We also studied here the DS properties of spins of these
Ak Z, symm. BAWe PC [16] systems, which can be regarded as the “duall” variables of
) kinks but they do not obey the parity conservation. The com-
B-k Z, symm. BAWe PC [16] bined ob . f spi d Kink d iabl hed
BAWe-s singlet BAWe PC [17.18,2526 ined observation of spin and kink damage variables sheds

light on the interplay of parity conservation, absorbing state

Elé\}ivlcl\)/-l-sk ZSIsnfrlr?; SQVV\\//;) Eg H;;g;gzﬁ symmetry a_nd un_iversality. In thi_s paper we shall s_how by
3MM-s ZZ < mm' BAWe P [21]’ ' numerical S|mulat|(_)ns that the universality is determined not
2 Symm. only by the dynamics but that the symmetry of the absorbing
IMD-5 Zp symm.  BAWe PC [23.24 state is a necessary condition again af2h,27.
GDK-s Zp symm.  BAWe PC [31] If the critical point and the DS point coincide interesting
ISCA-s singlet  Global-PC ~ DP [22] things happen. While the kink damage exponents will belong
IMD-s+h Z, broken  BAWe DP  [24] to the PC universality class, in the case of the spin damage
NEKIM-k+h  Z, broken ~ BAWe DP [27] the static exponents determined by finite size scaling are in
GDK-s+h Z, broken  BAWe DP [31] agreement with that of the pure NEKIM model at the PC

transition point on the spin levg27]. Detailed discussion on
fhis is forthcoming33].

The dependence of the DS results on the initial states of
e replicas is discussed becauseAomodel very slow re-
xation makes it an important point.

non-DP universality class was first conjectured to be the pal
ity conservatior(the PC class name comes from Hekdow-
ever, this had to be refined, because models were found wit]W
global parity conservation but DP class phase transftee, '3
for example, Ref[22] (ISCA)]. Field theoretical investiga-
tions of the BAW models showed that the BAWe parity | paMAGE SPREADING SIMULATION METHODS
conservation dynamics in one dimension results in a new
non-DP fixed point possessing the PC class universality, The time dependent simulation is a well established
while for an odd number of offsprin@BAWo) the transition method to locate critical points and to measure dynamical
is in the DP clas$25,26. Furthermore, among the multiple critical exponents at the same tiri28]. Here we applied it
absorbing state models one can have DP behavior arfér kink and spin damage variables for system sites
BAWe parity conservation dynamics together if the symme-=4096—-16384 with periodic boundary conditions. A single
try of the absorbing states is brokgsee[24] in the case of spin-flip difference is introduced between two identical rep-
IMD, [27] in case of the NEKIM model, aniB1] in case of licas at the beginning of each simulation runs. The difference
the generalized Domany-Kinzel SC&DK)]. This implies  of spin and kink variables is measured during a time evolu-
that for multiabsorbing state models the BAWe parity con-tion with identical rules and random numbers for both rep-
servation is not a sufficient condition to have non-DP univerdica. The maximum number of simulation steps was chosen
sality class but the symmetry of the ground state is necessatg betyax =L/2, and so the damage variables cannot reach
too. See Table I. the boundaries and one can avoid finite size effects of them.
A very recent study has shown that the DS transition isHowever, simulating near the critical point causes long tran-
possible in a one-dimensional non-equilibrium kinetic Isingsients, hindering one from seeing the true scaling behavior
model[32] too, and the universality class of the transition is within reachable times.
not always in the DP class. The dynamics was engineered as The role of initial states of the replicas is not discussed in
the combination of two subrules such that it createsym-  the DS simulation literature. If the DS transition point is not
metric passive states, the kink damage variables follown the neighborhood of a critical point an exponentially quick
BAWe parity preserving dynamics, and a PC universalitytransient to the steady state is expected, but if they
class DS transition emerges. coincide—as in case of the Grassberger A model—the evo-
In this work we have investigated the damage spreadingption to steady state slows down to power law time depen-
behavior of some one-dimensional PC models: Grassbergertdence and we can expect finite time effects. First random
A and B stochastic cellular automa{&®CA) [5] with syn-  states have been chosen with equal and uniform distribution
chronous dynamics and the NEKIM mod#&B]. The “kink” of 0's and 1's. In the case of modal SCA this resulted in
variables of these models possess parity conservation amry confusing results. Then we investigated the effects by

continuous PC class phase transition. starting with a steady state configurations, i.e., replicas were
In the case of the NEKIM model the 01 and 10 pairs actdriven to steady state before the DS measurements.

as kinks and follow the basiBAWe) elementary reactions: The quantities characterizing damage evolution show

(i) left-right diffusion, (ii)) X—3X reproduction, (iii) 2X powerlike behavior in thé—o limit at the damage spread-

—0 annihilation. ing point (py) separating chaotic and nonchaotic phases. The

Since at damage spreading problems we follow the evoHamming distance will be the order parameter of this paper:
lution of two or more replicas, we can consider it as a spe-
cial, multicomponent dynamical problethere with multiple L
absorbing states tpoFurthermore, when the DS point is D(t)=<£ 2 |s(i)_sl(i)|> 0
inside the active phase there is a passive state of the damage Li=1 '
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where s(i) may denote now spin or kink variables. Kink D(p)|p—pcl?, 9
variables for these models are the 00 and 11 pairs in the case

of the A,B SCA and 01 and 10 pairs for the NEKIM model. andy describes the fluctuation of it:

If there is a phase transition point, the Hamming distance B

behaves in a power law manner at that point: x(P)<|[p—p 7 (10)

D(t)oct?, (2)  Simulations were done in one dimension for lattice sizes
=64,128, ..,2048. The necessary time steps to reach steady
Similarly the survival probability of damage variables be- state were determined experimentally. The time evolution of
haves as the concentration was plotted, and the necessary time steps
were fixed for a giverL such as 200-500 time values fol-
Py(t)oct™? (3 lowing the level off. Averaging was done for these 200—500

. values times the number of surviving samp(B80). The py
and the average mean square distance of damage spreadifes were taken from the time-dependent Monte Carlo

from the center scales as (MC) calculations.
R2(t)oct?. 4) The dynamic exponemt= v, /v, can be determined from
the FSS of the characteristic timép,L). In this study we
The evo'ution runs were averaged O\mg independent measured the t|me necessary t.O I‘eaCh half Of the Steady State
runs for each different value qf in the vicinity of py [but ~ concentration starting from a single damage state. The char-
for R2(t) only over the surviving ruris acteristic time obeys the finite size scaling law:

To estimate the critical exponents and the transition points

Z _ 1lv
together we determined the local slopes of the scaling vari- 7(p,L)=LohL(p=pe)L ™1, (1D
ables. For example, in case of the survival probability, whereZ= v, /v, . For this measurement we used the same
~ In[P<(t)/P<(t/m)] damage concentration time evolutions as in the case of the

(5) static runs above.

- 5p(t)

In(m)

and we have useoh=4. In the case of power-law behavior l. GRASSBERGER B MODEL

we should see a horizontal straight line as—0, whenp A (BAWe) parity conserving dynamics can be realized on
=pq. The off-critical curves should possess curvaturethe kinks (or “particles”) of the following SCA (we show

Curves corresponding fp>py should veer upward, curves the configurations at—1 and the probability of getting 1 at
with p<pg4 should veer downward. timet):

The damage spreading measurement of the order param-
eter time scaling can be very effectively parallelised in as—_1:- 100 001 101 110 011 111 000 010
multispin code mann€rl0], since one needs only one ran- - 1 1 1 D D 0 0 0
dom number for each site of the different replicas and so one
can follow the evolution ofN,=(32x31)/2 replicas in a ) . .
simple 32-bit computer vector of length. However, this 'I_'he 00 and_ll pairs are the S|rr_1plest kinks of the model. _The
method is not applicable to measure the survival probabilitfime evolution pattern fop=0 is a regular chessboard in
scaling andz, since the healing of differences among all thel*1 dimensions(Rule-50 with double degeneratipri.e.,
N, replicas takes a very long time and one cannot introduc&€ absorbing states are period-two antiferromagnetic. For
a single initial damage for each pair at the center of the®<Pcl=0.539(1) kinks disappear exponentially, while for
lattice. For the simulation of survival probability a very ef- P> Pc they survive with a finite concentration. In tipe=1

fective code has been implemented for a special, associatiJénit we get the deterministic Rule-122, which is known to
string processof34]. be chaotic. So there is damage spreading phase transition

To determine static exponents finite-size scalif$9 besides the absorbing phase transition of PC universality.
simulations were performed as well. As shown by Aukrust
et al. [35,36], FSS is applicable to continuous, nonequilib- A. Kink damage results
rium phase transitions. At the critical point the order param-
eter steady state densityD] and the fluctuation y
=L9((D?)—(D)?) scale with the system size as

First the simulations were started from two replicas of
lattices with identical random initial states but with a 2-kink
initial difference. The parity of the lattice forces an even or
odd number of initial kinks, therefore it is not possible to
create odd numbered kink differences. The parity of kinks is
conserved. The parity of kink differencésven is conserved
too.
where v, is the correlation length exponent in the space Stll we see a DP-like universality of the damage vari-
direction: ables(Figs. 1 and 2 The location of the damage spreading
point [pyq=0.632(1) is far from the PC critical poinfp.
Ep)x|p—pe ML, (8) =0.539(1)], therefore the active phase is divided into a cha-
otic and nonchaotic subphase similarly to the case of the
B is the order parameter exponent in the steady state: Domany-Kinzel SCA[29,30,1Q. The replicas at the DS

D(L)ocL~F"", (6)

x(L)ocL s, (@)
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. . . FIG. 3. Finite size scaling results for the spin and kink damage
ZI?‘fl' E%CZIZs(l)oggsooégtgeoI-ézr:rglrégaudlstar;(:e) 'Q :Pe Bt for the B model. The diamonds correspond to the kink damage
mode], forp=1.62, ©.53, 1,632, 1,64, L.4alirves from botlom 1o concentration, the squares to the fluctuations of it. The crosses cor-

top). Statistical averaging was done over 10 000 samples. respond to the spin damage concentrationxteeo the fluctuations

of it. Triangles and stars denote characteristic timed the spin
point are in fluctuating states, therefore, they do not have thend the kink damage cases. Averaging was done over 500 surviving
“chessboard” double degeneration as in case of the PC critisamples.
cal point. The emergence of the DP exponents in spite of the
mod 2 conservation of kink damage variables is similar to As one can see both the kink and spin damage concentra-
what was found numerically and analytically for PC models,tion show a scaling with- 8/v, = —0.25, while the fluctua-
when the externaH field destroyed the symmetry of the tions have a slope/v, =0.5, all agreeing with the corre-
absorbing statf24,27,31. This suggests that the BAWe par- sponding exponen{87] in the DP universality class. For the
ity conservation rule is not a sufficient condition for having critical dynamical exponenZ=v,/v, DP-like scaling has
non-DP universality. been found for both the spin and kink damage cases. Fitting

The same results have been found if we started the repliean be done with. 15798 (DP valug in both cases.

cas from steady states with a single spin-flip initial differ-
ence. IV. GRASSBERGER A MODEL

. Another very similar model exhibiting parity conservation

B. Spin damage of kinks is the Grassbergéx stochastic cellular automaton:
Following the damagé&ifference of the spins, instead of

the kinks, we obtained the same DP-like results. The univerr—1: 100 001 101 110 011 111 000 010

sality was insensitive to the parity of the damage variables, if. 1 1 0 1-p 1-p O 0 1

is DP for both cases.

The time evolution pattern in+1 dimensions, for smalb
L . . : evolves towards a stripelike ordered steady stététh

Finite size scaling simulations were performed at the DSjouble degeneration while for p>pJ[=0.1245(5) the
transition  point  p4=0.633) for system sizesL  kinks (the 00 and 11 pailssurvive. Forp=0 we have the
=64,128...,1024. The necessary time steps to reach steadigjle-94, class 1 CA, while the=1 limit is the chaotic
state weret=40 000,80 00Q.. ., respectively. The results Ryle-22 deterministic CA. Therefore we can expect a dam-
can be seen in Fig. 3.

C. Finite size scaling for both cases
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FIG. 4. Local slopes of the Hamming distantg) in the A
FIG. 2. Local slopes of the damage survival probabilify in model, forp=0.130, 0.132, 0.134curves from bottom to top The
the B model, forp=0.62, 0.63, 0.632, 0.634, 0.66urves from  simulations were started from the random initial state. Statistical
bottom to top. Statistical averaging was done over 10 000 samplesaveraging was done over6l®® samples.
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FIG. 5. Local slopes of the damage survival probabilify in FIG. 7. Local slopes of the Hamming distancgf,) in the A

the A model, forp=0.130, 0.132, 0.134curves from bottom to  model, forp=0.123, 0.124, 0.125, 0.12@urves from bottom to
top). The simulations were started from the random initial state.top) in the case of steady state initial condition. Averaging was
Statistical averaging was done over* Eamples. done over X 10° independent samples.

age spreading phase transition betwgeap. and p=1
(damages always heal or survive in the ordered stead
states.

Now we can see dramatic changes. First, the DS point moves
% the critical poin py=0.1242(1) (see Fig. 7.
The correspondingy, exponent is around zero, which
agrees with that of the PC universality class. In case of the
A. Kink damage results survival probability we could use the conventional non-
First two replicas of lattices of the same random initial Multi-spin coding algorithm with much less statistics. Still
distributions but a single spin-flip difference condition were @€ can read off the same transition point with the value
followed. As the local slope figuréFig. 4) of theD(t) shows ~9~0-2838) (Fig. 8), which is again in the PC class.

the DS transition poinfpy=0.133(1) seems to be slightly _ '1us we can see the emergence of PC behavior, which is
off the critical point[p,=0.1242(5). One can read off; in accordance with the BAWe conservation of kink-damage
-=0. .

=0.34(1), which is close to the DP universality class value V&7iables and theZ, degeneration of the absorbing state
[ 7op="0.314(3)], but for the survival probability we got arises from the fact that, and pq comc!ded. Note that the
nearly zero exponeriFig. 5. The survival probability scal- Statistical errors are larger now than in t8emodel case,
ing with 5~ 0 contradicts the DP scaling and one may specu¥Ven the DS simulations were carried out not in the imme-
late that we can see a finite time effect. We extended thdiat® neighborhood of the critical point.

same time dependent simulations up tg,=28 000 for cer-

tain p values, but there were no sign of change in the above B. Spin damage results

results. To check the transients the evolution of the kink The parity of the spin damage variables is not conserved
concentration starting from a disordered state has been fojn this case. When the simulations were started from random
lowed on al =8192 lattice. As Fig. 6 shows there is a very jnitial states we obtained the same DS transition point as in
long relaxation in this model, and the steady state has beefhse of the kink-damage case, but with neither DP nor PC
reached following X10° MC time steps only. Therefore universality class values. The simulations have been done
time dependent simulations from steady state initial condipoth with conventional and multispin code algorithm. These

tions have been performed. The initial states now were choresulted in the results for the spin damage Hamming distance
sen to be the outcomes of runs following«80° time steps

for different p s, with the usual single spin-flip difference.

0.25 , . . , 026 |
0.2 ¢ -0.28
(1=}

0.15 |
© 0.3

01}

0.05 - -0.32 . . . ,

0 0.002 0.004 0.006 0.008 0.01
11

0 L L L
8
100 1000 1000t0 100000 10 FIG. 8. Local slopes of the survival probability) in the A

model, forp=0.123, 0.124, 0.1245, 0.128urves from bottom to
FIG. 6. Evolution of the kink concentration in the model (L top) in case of steady state initial condition. Averaging was done
=8192) started from random initial state @t 0.124. over 50 000 independent samples.
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model, forp=0, 124, 0, 1245, 0.12€curves from bottom to top

FIG. 9. Local slopes of the Hamming distancg) in the A e simulations were started from steady state. Averaging was over
model, forp=0, 125, 0, 127, 0.130, 0.132, 0.13durves from 3x 10° samples.

bottom to top. The simulations were started from the random state.

Statistics over 100 000-500 000 samples. almost the same. Indeed the simulations resulted in the same

PC-likez [z=1.14(1)] exponent in both casd§ig. 12.
shown in Fig. 9. For the survival probability we obtained a
nearly zeroé exponent, as in the case of kink damage; see C. Finite size scaling for both cases
Fig. 10. These results are quite confusing again, especially 1y finite size scaling simulations were performed at the
the exponenty=0.51), which does not belong to the (1 DS transition point py=0.1242) for system sized

+1)-dimensional DP or to the PC class. We cannot give a_g4 12g...1024. The necessary time steps to reach steady

better explanation for this, that the very long transients pregiate weret =10 000.20 000. . . . respectively. The results
vented the healing of damages and the possibility to see they pe seen in Fig. 13.
“true” scaling behavior. In the case of the kink damage one can see regular PC-

Indeed, if the simulations were started from near thejike scaling for the concentration 8 /v, = — 0.5, the fluc-
steady state the results become very different. The DS tranuations of ity, /v, =0, and for the critical dynamical expo-
sition point seems to coincide with the critical poin, nentZ,=v,/v, =1.75. In the case of the spin damage we
=0.1242(5) and we could get a spin-damage concentratiorcan see a constant 0.5 steady state concentration for all sys-
exponent:ns=0.292), which is close to they’ =0.285(5) tem sizes, resulting iB;/v, =0 as in the case of the pure
of the PC scalingFig. 11). Glauber Ising model at=0 and the NEKIM model at the

The results for the survival probabilitysf) andzs coin-  PC transition point. In agreement with this and Fisher’s static
cided with that of the kink-damage case, which can be unscaling law
derstood by the following. Although theoretically to each
spin-damage absorbing state can correspond two kink- y=dv, -2 (12
damage absorbing statésy flipping all spins of one rep- ) . . ) _
lica), simulations showed that the kink and the spin damag&€ fluctuations of it exhibit a linear scaling lawyd/v,
died out always at the same time. In the case of the spreadirigl): Whereas the scaling of the characteristic time is de-
one can easily check that % measurements should give Scribed by what was found in the case of the pure NEKIM
the same results for both kink and spin damage cases, bglodel at the PC transition point for the spin variat2g].

cause the beginning and the end of the perturbed region are

1.2
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1.14 ¢
N
1.11
-0.03
-8
1.08
1.05 : : ' :
-0.04 0 0.002 0.004 /‘0.006 0.008 0.01
1

FIG. 12. Local slopes oR%(t) (2) in the A model, forp=0,
124, 0, 1245, 0.125, 0.12@urves from bottom to tgp The simu-
lations were started from steady state. Averaging was done over 5
FIG. 10. Same as above for the survival probability. X 10* independent run.
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14
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FIG. 13. Finite size scaling results for the spin and kink damage F|G. 15. Local slopes of the kink damage concentratigp) (

for the A model. The diamonds correspond to the spin damagegor p=0.385, 0, 39, 0.395, 0.40.40Burves from bottom to top
concentration, the squares to the fluctuations of it. The crosses cogtatistical averaging was done over 100 000 samples.

respond to the kink damage concentration, #is to the fluctua-

tions of it. Triangles and stars denote characteristic time$ the

spin and the kink damage cases. Averaging was done over 5 nces the effect ofe and leads to&c—_—_Q.362(1).] In
surviving samples. 19,27 we have started from a random initial state and de-

termined the phase boundary in th& §.,) plane. The phase
V. NEKIM MODEL space is composed of an active phase with free kinks and an
) ) ) ~ absorbing, ordered phase without kinks provided the initial
The PC universality appears in a class of nonequilibriumstate has an even number of kinks. They are separated by a
dynamic Ising models where the kinks corresponding to Okecond order phase transition line of PC universality. To in-
and 10 domain walls evolve according to the BAWe rules,estigate the damage spreading properties we have chosen to
[19]. The dynamics is composed of the alternating applicafix '=0.35, p,,= 0.3, and chang@ (that will play the role
tion of (i) a zero temperature spin flip lattice update: of p now). The PC critical point has been determined pre-
r y cisely[38]: .= —0.3952).
wi=7(1+ 08i-1Si+1)| 1— Esi(si—1+5i+1) , (13
A. Time dependent simulations
where y=tanh 2/kT (J denoting the coupling constant in
the Ising Hamiltoniap I" and § are further parameters result-
ing in random walk, annihilation of kinksji) and a spin-
exchange lattice update:

Time dependent simulations up tgax =8192 were per-
formed and we found that the DS transition point coincides
with &, within statistical errors. The simulation results now
were less sensitive whether we started from random initial

Wiis1=3ped1—SiSii1], (14)  state or from steady state. For the spin damage density we
obtainedn,=0.29(1) when we started from steady state, as
where pey is the probability of spin exchange, resulting in in the case of théA model.[If we started from the random
kink — 3 kink creation. initial state »;=0.38(2) scaling appeared at ti& point.]

The spin-flip part has been applied using two-sublatticeThis is shown in Fig. 14.
updating, whileL MC spin-exchange attempts has been done The Hamming distance measurements for kinks resulted
randomly using the outcome state of the spin-flip part. Allin »~0 in accordance with the PC universality class value
these together have been counted as one time step of efig. 15. The survival probability simulation gave the same
change updating[Usual MC update in this last step en-

024 F
0.36
025 |
0.34 | \
[y -0.26 | '\“
032 |
7=} '0.27 ',
& 031 b 028 |
0.28 | 029 |
0.26 | 03!
0.24 0 005 001 0015 002

0 0.001 0.0/?2 0.003 0.004
1

FIG. 16. Local slopes of the damage spin and kink survival
FIG. 14. Local slopes of the spin damage concentratignfor probability (8), for p=0.385, 0, 39, 0.395, 0.40.4QBurves from
p=0.386, 0, 39, 0.392, 0.395, O(urves from bottom to top bottom to top. Statistical averaging was done over 100 000
Statistical averaging was done over 20 000—40 000 samples. samples.
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FIG. 19. Time evolution of the kink damage in the NEKIM

2 i —
FIG. 17. Local slopes oR“ of spin damage %), for p=0.39, model near the DS transition point.

0.395, 0.4(curves from bottom to tgp Statistical averaging was
done over 100 000 samples. scaling has been obtained for both the spin and kink damage
cases. As Fig. 20 shows fitting can be done wit® (PC
results for spin and kink damage cases, namely, they angalue in both cases. The deviation from DP scaling law can
PC-like; see(Fig. 16. As in case of theéd model the simu- clearly be seen in the figure too. It is reasonable to assume
lations resulted in the same PC-likg z=1.14(1)] (see Fig. that the scaling behaviors are inherited from the pure
17) exponent in both cases, because the spin and kink danNEKIM model.
age regions start and stop approximately at the same sites.

This can be observed on Figs. 18 and 19, where we plotted

the time evolution patterns of spin and kink damages of the ) ) ) )
same run. The damage spreading behavior of three one-dimensional,

One can see that the boundaries of the perturbed regiom®nequilibrium models, exhibiting a parity conserving phase

are the same, but the spin-damage pattern is compact, cad&ansition has been investigated numerically. TReSCA
ing the higher. exponent. model of Grassberger has been found to be very sensitive on

the initial conditions of the DS simulations. Acceptable
results—which are in good agreement with that of the
NEKIM model—can be found only when the DS simulations
Finite size scaling simulations were performed at the DSgre started from steady state.
transition point 4=0.395) for system sizesL When the DS transition point coincidédithin statistical
=64,128...,2048. The necessary time steps to reach steadgrron with the ordinary critical point of the modé¢NEKIM,
state were =7000,14 000, . . ,200 000, respectively. Figure A mode) interesting things have happened on both the spin
20 summarizes the results. The kink concentration shows and the kink damage level.
nice scaling withg, /v, =0.5, while the fluctuations had no In the case of th&8 model the DS transition point was
pronounced slope on the log-log plot, suggesting v, found to be far away from the critical point and all exponents
=0. Both of these values are in agreement with the PC uniton spin and kink damage level equalshow DP universal-
versality class. The spin damage concentration is constaiity class behavior independently of the parity conservation of
[c=0.50(1)] meaningBs/v, =0.0 similarly to theA-model  damage variables.
case. A linear scaling witly;/v, =1 could be fitted for the

VI. CONCLUSIONS

B. Finite size scaling

fluctuation of it, meaningys=v, . This means that the ex- 100000
ponents are in agreement with Fisher’s scaling[|[Eey. (12)] 10000 ¢
again. For the critical dynamical exponeht v, /v, PC-like 1000 |
100 ¢
2200 10k .
2150 | T
04l 2
2100 t 0.01 ¢ .
—_ 0.001 ¢ a s ® o @
2050 0.0001 - :
10 100 1000 10000
2000 ¢ FIG. 20. Finite size scaling results for the NEKIM model. The
crosses correspond to kink damage concentration, the squares to the

1950 fluctuations of it. The stars correspond to spin damage concentra-
tion, diamonds to the fluctuations of it. The triangles and xie
correspond to the kink and spin damage characteristic tifes
FIG. 18. Time evolution of the spin damage in the NEKIM Averaging was done over 500 surviving samples. The intermediate

model near the DS transition point. dotted line shows a DP-like scaling law fer

0 500 1000 1500 2000

t
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TABLE Il. Kink damage results. TABLE lll. Spin damage results.

NEKIM GR-A GR-B DP PC NEKIM GR-A GRB DP PC
P 0.3955) 0.12425) 0.5391) Pe 0.3955) 0.12425) 0.5391)
Pd 0.3955) 0.12425) 0.6331) Pd 0.3955) 0.12425) 0.6331)
7 0.033) 0.033) 0.31(2) 0.31371) 0.000Q1) 7' 0.291) 0.292) 0.322) 0.31371) 0.2852)
) 0.281) 0.2858) 0.1602) 0.15964) 0.2852) S 0.281) 0.2858) 0.1602) 0.15964) 0.2852)
z 1.141) 1.141) 1.266Q1) 1.1412) z 1.141) 1.141) 1.266Q1) 1.1412)
z 1.743) 1.758) 1.594) 157982 1.7505) z 1.751) 1.795) 1.489) 1.57982) 1.75Q5)
Blv, 0.5006) 0.492) 0.272)  0.25226) 0.5005) Blv, 0.00011) -0.001(1) 0.2€2) 0.25226) 0.5005)
ylv, 0.071) 0.1(1) 0.5 0.495¢2) 0.005) ylv, 1.007) 0.996) 0.464) 0.49562) 0.005)
Univ. PC PC DP Univ. CPC CPC DP

) i i strengthened by simulations of the pure NEKIM model at the
Tables Il and Il summarize the simulation results for thepc ransition point. Starting the time dependent simulations
transition points and DS exponents of the models investifom a single seed we measured the uspahd 8 exponents
gated as well as DP and PC critical exponent estimates fromgf the spins. In accordance with the DS results we obtained
Refs.[18,27,317. PC exponents again’ =0.2855), 6=0.2855). A detailed
The 7' is the PC exponent when the BAWe process isstudy of CPC for the spins in the framework of NEKIM and
started from an odd number of particles. The CPC notatiolits connection to the CDP point of Domany-Kinzel CA is
denotes the compact version PC universality class in analogynder way| 33].
with the CDP in the case of DP universality. The conclusions These exponents satisfy the generalized hyperscaling law
of this paper are in agreement with previous works concernf13] with 8=0:
ing PC to DP universality changé®r example[24,27,3]). 8
It is also in agreement with the recent DS study of Hinrich- P '
senet al. [32], because when they obtained a PC class DS 2( 1+ B’) o'+2n'=dz, (19

transition in the case of the one-dimensional kinetic Ising h s the ultimat ival orobabilit t Not
model they created a mixed dynamics, which satisfies bot eref IS the ultimate survival probability exponent. Note
that the discontinuous phase transition, the compact clusters

the BAW it tiofi.e., they followed the ki . ;
© e parity conservatiofi.e., they followed the kinks (see Fig. 18 and the form of the hyperscaling law suggests

and the symmetric ground state conditibre., they gener- h i th . . : f
ated passive states by “switching” between two dynamicst at our case is the parity conserving version of compact

that results in double degeneration: no damage versus fu(ﬂwected percolatioi29,39,4.
damage In our case it has never happened that one replica
would became completely reflection symmetric to the other.
The simple dynamical rules always have driven the states to The authors thank Haye Hinrichsen and J. F. Mendes for
the same sector, where spin and kink damages died out dielpful discussions. Support from the Hungarian research
multaneously. fund OTKA (Grant Nos. 023552 and 023791and from
One may assume this scheme to be valid for non-DS dyNATO Grant No. CRG-970332 is acknowledged. The simu-

namical transitions too, if the model has multiple absorbingations were performed partially on the FUJITSU AP-1000

states(with or without Z, symmetry. This hypothesis is and the ASTRA2 parallel supercomputers.
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