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Damage spreading for one-dimensional, nonequilibrium models
with parity conserving phase transitions
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The damage spreading~DS! transitions of two one-dimensional stochastic cellular automata suggested by
Grassberger~A andB! and the nonequilibrium kinetic Ising model of Menyha´rd ~NEKIM ! have been inves-
tigated. These nonequilibrium models exhibit nondirected percolation universality class continuous phase
transitions to absorbing states, exhibit parity conservation~PC! law of kinks, and have chaotic to nonchaotic
DS phase transitions, too. The relation between the critical point and the damage spreading point has been
explored with numerical simulations. For modelB the two transition points are well separated and directed
percolation universality was found both for spin damage and kink damages in spite of the conservation of
damage variables modulo 2 in the latter case. For modelA and NEKIM the two transition points coincide with
drastic effects on the damage of spin and kink variables showing different time dependent behaviors. While the
kink DS transition of these two models shows regular PC class universality, their spin damage exhibits a
discontinuous phase transition with compact clusters and PC-like spreading exponents. In the latter case the
static exponents determined by finite size scaling are consistent with that of the spins of the NEKIM model at
the PC transition point. The generalized hyperscaling law is satisfied. Detailed discussion is given concerning
the dependence of DS on initial conditions especially for theA model case, where extremely long relaxation
time was found.@S1063-651X~98!12605-3#

PACS number~s!: 05.40.1j, 64.60.2i
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I. INTRODUCTION

While damage spreading~DS! was first introduced in bi-
ology @1# it has become an interesting topic in physics
well @2–4#. The main question is if a damage introduced in
dynamical system survives or disappears. To investigate
the usual technique is to make replica~s! of the original sys-
tem and let them evolve with the same dynamics and ex
nal noise. This method has been found to be very usefu
measure accurately dynamical exponents of equilibrium s
tems@5#. It has turned out, however, that the DS propert
do depend on the applied dynamics. An example is the c
of the two-dimensional Ising model with heat-bath algorith
versus Glauber dynamics@6–8#.

To avoid the dependences on dynamics Hinrichsenet al.
@9# suggested a definition of ‘‘physical’’ family of DS dy
namics according to which the active phase may be divi
into a subphase within which DS occurs for every membe
the family, another subphase where the damage heals
every member of the family, and a third possible subph
where DS is possible for some members and the dam
disappears for other members. The family of possible
dynamics is defined such that it is to be consistent with
physics of the single replicas~symmetries, interaction
ranges, etc.!.

The universality of continuous DS transitions is an oth
open question. There is a hypothesis raised by Grassbe
@10#, that damage spreading transitions generically belon
the universality class of directed percolation~DP! if they are
separated from the ordinary critical point. This claim
based on the DP hypothesis applied for the absorbing
571063-651X/98/57~5!/5168~10!/$15.00
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DS transition since we can consider the difference of
replicas as another dynamical system evolving by a comp
rule. According to the DP hypothesis—conjectured first
the early 1980s@11,12#—in the absence of conservation law
every continuous phase transition of a system with sc
order parameter and local interactions to a single absorb
phase would belong the universality class of the DP. Th
are other more complex models such as those with sev
absorbing states@13# and multicomponent systems@14#,
which exhibit the DP transition too. The DP universali
class has been proven to be extremely robust. For a long
only a few number of exceptions has been found, which
not belong to the DP class. These are the parity conserva
~PC! models and the multiplicative noise systems@15#.

The first examples of the PC models were Grassberg
(A and B! stochastic cellular automata~SCA! @16#. The
kinks ~00’s and 11’s! of these models exhibit mod 2 parit
conservation and the absorbing state is doubly degenera
Following that a series of models in the same universa
class have been discovered. In the case of the branc
annihilating random walk with an even number of offsprin
~BAWe! @17,18# the parity of the ‘‘particles’’ is conserved
and there is a single absorbing state. In the nonequilibr
Ising model with combined spin-flip and spin exchange d
namics ~NEKIM ! @19,20# the kinks have local parity con
serving symmetry and the absorbing state is symmetric
doubly degenerated. The three species monomer-mono
@21# ~3MM! and the interacting monomer-dimer~IMD ! mod-
els @23,24# are multicomponent models with parity conserv
tions and symmetric absorbing phases.

The common feature of these models that force them
5168 © 1998 The American Physical Society
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57 5169DAMAGE SPREADING FOR ONE-DIMENSIONAL, . . .
non-DP universality class was first conjectured to be the p
ity conservation~the PC class name comes from here!. How-
ever, this had to be refined, because models were found
global parity conservation but DP class phase transition@see,
for example, Ref.@22# ~ISCA!#. Field theoretical investiga
tions of the BAW models showed that the BAWe par
conservation dynamics in one dimension results in a n
non-DP fixed point possessing the PC class universa
while for an odd number of offspring~BAWo! the transition
is in the DP class@25,26#. Furthermore, among the multipl
absorbing state models one can have DP behavior
BAWe parity conservation dynamics together if the symm
try of the absorbing states is broken@see@24# in the case of
IMD, @27# in case of the NEKIM model, and@31# in case of
the generalized Domany-Kinzel SCA~GDK!#. This implies
that for multiabsorbing state models the BAWe parity co
servation is not a sufficient condition to have non-DP univ
sality class but the symmetry of the ground state is neces
too. See Table I.

A very recent study has shown that the DS transition
possible in a one-dimensional non-equilibrium kinetic Isi
model@32# too, and the universality class of the transition
not always in the DP class. The dynamics was engineere
the combination of two subrules such that it createsZ2 sym-
metric passive states, the kink damage variables fol
BAWe parity preserving dynamics, and a PC universa
class DS transition emerges.

In this work we have investigated the damage spread
behavior of some one-dimensional PC models: Grassberg
A and B stochastic cellular automata~SCA! @5# with syn-
chronous dynamics and the NEKIM model@19#. The ‘‘kink’’
variables of these models possess parity conservation
continuous PC class phase transition.

In the case of the NEKIM model the 01 and 10 pairs
as kinks and follow the basic~BAWe! elementary reactions
~i! left-right diffusion, ~ii ! X→3X reproduction,~iii ! 2X
→0 annihilation.

Since at damage spreading problems we follow the e
lution of two or more replicas, we can consider it as a s
cial, multicomponent dynamical problem~here with multiple
absorbing states too!. Furthermore, when the DS point
inside the active phase there is a passive state of the dam

TABLE I. Summary of PC related models. The notationk refers
to kink, s refers to spin, andh means external field as variable o
the model.

Model Abs. state Dynamics Univ. Ref. no.

A-k Z2 symm. BAWe PC @16#

B-k Z2 symm. BAWe PC @16#

BAWe-s singlet BAWe PC @17,18,25,26#
BAWo-s singlet BAWo DP @17,18,25,26#
NEKIM-k Z2 symm. BAWe PC @19,27,38#
3MM-s Z2 symm. BAWe PC @21#

IMD-s Z2 symm. BAWe PC @23,24#
GDK-s Z2 symm. BAWe PC @31#

ISCA-s singlet Global-PC DP @22#

IMD-s1h Z2 broken BAWe DP @24#

NEKIM-k1h Z2 broken BAWe DP @27#

GDK-s1h Z2 broken BAWe DP @31#
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variables with fluctuating replicas in the background. The
fore the simple DP universality hypothesis cannot be app
here~although this does not exclude a DP class phase t
sition!.

We also studied here the DS properties of spins of th
systems, which can be regarded as the ‘‘dual’’ variables
kinks but they do not obey the parity conservation. The co
bined observation of spin and kink damage variables sh
light on the interplay of parity conservation, absorbing st
symmetry and universality. In this paper we shall show
numerical simulations that the universality is determined
only by the dynamics but that the symmetry of the absorb
state is a necessary condition again as in@24,27#.

If the critical point and the DS point coincide interestin
things happen. While the kink damage exponents will belo
to the PC universality class, in the case of the spin dam
the static exponents determined by finite size scaling ar
agreement with that of the pure NEKIM model at the P
transition point on the spin level@27#. Detailed discussion on
this is forthcoming@33#.

The dependence of the DS results on the initial states
the replicas is discussed because forA model very slow re-
laxation makes it an important point.

II. DAMAGE SPREADING SIMULATION METHODS

The time dependent simulation is a well establish
method to locate critical points and to measure dynam
critical exponents at the same time@28#. Here we applied it
for kink and spin damage variables for system sizesL
54096– 16384 with periodic boundary conditions. A sing
spin-flip difference is introduced between two identical re
licas at the beginning of each simulation runs. The differen
of spin and kink variables is measured during a time evo
tion with identical rules and random numbers for both re
lica. The maximum number of simulation steps was cho
to be tMAX 5L/2, and so the damage variables cannot re
the boundaries and one can avoid finite size effects of th
However, simulating near the critical point causes long tr
sients, hindering one from seeing the true scaling beha
within reachable times.

The role of initial states of the replicas is not discussed
the DS simulation literature. If the DS transition point is n
in the neighborhood of a critical point an exponentially qui
transient to the steady state is expected, but if th
coincide—as in case of the Grassberger A model—the e
lution to steady state slows down to power law time dep
dence and we can expect finite time effects. First rand
states have been chosen with equal and uniform distribu
of 0’s and 1’s. In the case of modelA SCA this resulted in
very confusing results. Then we investigated the effects
starting with a steady state configurations, i.e., replicas w
driven to steady state before the DS measurements.

The quantities characterizing damage evolution sh
powerlike behavior in thet→` limit at the damage spread
ing point (pd) separating chaotic and nonchaotic phases. T
Hamming distance will be the order parameter of this pap

D~ t !5K 1

L (
i 51

L

us~ i !2s8~ i !u L , ~1!
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5170 57GÉZA ÓDOR AND NÓRA MENYHÁRD
where s( i ) may denote now spin or kink variables. Kin
variables for these models are the 00 and 11 pairs in the
of theA,B SCA and 01 and 10 pairs for the NEKIM mode
If there is a phase transition point, the Hamming distan
behaves in a power law manner at that point:

D~ t !}th. ~2!

Similarly the survival probability of damage variables b
haves as

Ps~ t !}t2d ~3!

and the average mean square distance of damage spre
from the center scales as

R2~ t !}tz. ~4!

The evolution runs were averaged overNs independent
runs for each different value ofp in the vicinity of pd @but
for R2(t) only over the surviving runs#.

To estimate the critical exponents and the transition po
together we determined the local slopes of the scaling v
ables. For example, in case of the survival probability,

2dp~ t !5
ln@Ps~ t !/Ps~ t/m!#

ln~m!
~5!

and we have usedm54. In the case of power-law behavio
we should see a horizontal straight line as 1/t→0, whenp
5pd . The off-critical curves should possess curvatu
Curves corresponding top.pd should veer upward, curve
with p,pd should veer downward.

The damage spreading measurement of the order pa
eter time scaling can be very effectively parallelised in
multispin code manner@10#, since one needs only one ra
dom number for each site of the different replicas and so
can follow the evolution ofNr5(32331)/2 replicas in a
simple 32-bit computer vector of lengthL. However, this
method is not applicable to measure the survival probab
scaling andz, since the healing of differences among all t
Nr replicas takes a very long time and one cannot introd
a single initial damage for each pair at the center of
lattice. For the simulation of survival probability a very e
fective code has been implemented for a special, associa
string processor@34#.

To determine static exponents finite-size scaling~FSS!
simulations were performed as well. As shown by Aukru
et al. @35,36#, FSS is applicable to continuous, nonequili
rium phase transitions. At the critical point the order para
eter steady state density (D) and the fluctuation x
5Ld(^D2&2^D&2) scale with the system size as

D~L !}L2b/n', ~6!

x~L !}Lg/n', ~7!

where n' is the correlation length exponent in the spa
direction:

j~p!}up2pcu2n', ~8!

b is the order parameter exponent in the steady state:
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D~p!}up2pcub, ~9!

andg describes the fluctuation of it:

x~p!}up2pcu2g. ~10!

Simulations were done in one dimension for lattice sizesL
564,128,. . . ,2048. The necessary time steps to reach ste
state were determined experimentally. The time evolution
the concentration was plotted, and the necessary time s
were fixed for a givenL such as 200–500 time values fo
lowing the level off. Averaging was done for these 200–5
values times the number of surviving samples~500!. Thepd
values were taken from the time-dependent Monte Ca
~MC! calculations.

The dynamic exponentZ5n i /n' can be determined from
the FSS of the characteristic timet(p,L). In this study we
measured the time necessary to reach half of the steady
concentration starting from a single damage state. The c
acteristic time obeys the finite size scaling law:

t~p,L !}LZh@~p2pc!L
1/n'#, ~11!

whereZ5n i /n' . For this measurement we used the sa
damage concentration time evolutions as in the case of
static runs above.

III. GRASSBERGER B MODEL

A ~BAWe! parity conserving dynamics can be realized
the kinks ~or ‘‘particles’’! of the following SCA ~we show
the configurations att21 and the probability of getting 1 a
time t!:

t21: 100 001 101 110 011 111 000 01
t: 1 1 1 p p 0 0 0

The 00 and 11 pairs are the simplest kinks of the model. T
time evolution pattern forp50 is a regular chessboard i
111 dimensions~Rule-50 with double degeneration!, i.e.,
the absorbing states are period-two antiferromagnetic.
p,pc@50.539(1)# kinks disappear exponentially, while fo
p.pc they survive with a finite concentration. In thep51
limit we get the deterministic Rule-122, which is known
be chaotic. So there is damage spreading phase trans
besides the absorbing phase transition of PC universality

A. Kink damage results

First the simulations were started from two replicas
lattices with identical random initial states but with a 2-kin
initial difference. The parity of the lattice forces an even
odd number of initial kinks, therefore it is not possible
create odd numbered kink differences. The parity of kinks
conserved. The parity of kink differences~even! is conserved
too.

Still we see a DP-like universality of the damage va
ables~Figs. 1 and 2!. The location of the damage spreadin
point @pd50.632(1)# is far from the PC critical point@pc
50.539(1)#, therefore the active phase is divided into a ch
otic and nonchaotic subphase similarly to the case of
Domany-Kinzel SCA @29,30,10#. The replicas at the DS
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57 5171DAMAGE SPREADING FOR ONE-DIMENSIONAL, . . .
point are in fluctuating states, therefore, they do not have
‘‘chessboard’’ double degeneration as in case of the PC c
cal point. The emergence of the DP exponents in spite of
mod 2 conservation of kink damage variables is similar
what was found numerically and analytically for PC mode
when the externalH field destroyed the symmetry of th
absorbing state@24,27,31#. This suggests that the BAWe pa
ity conservation rule is not a sufficient condition for havin
non-DP universality.

The same results have been found if we started the re
cas from steady states with a single spin-flip initial diffe
ence.

B. Spin damage

Following the damage~difference! of the spins, instead o
the kinks, we obtained the same DP-like results. The univ
sality was insensitive to the parity of the damage variable
is DP for both cases.

C. Finite size scaling for both cases

Finite size scaling simulations were performed at the
transition point (pd50.633) for system sizes L
564,128, . . . ,1024. The necessary time steps to reach ste
state weret540 000,80 000,. . . , respectively. The results
can be seen in Fig. 3.

FIG. 1. Local slopes of the Hamming distance~h! in the B
model, forp50.62, 0.63, 0.632, 0.634, 0.65~curves from bottom to
top!. Statistical averaging was done over 10 000 samples.

FIG. 2. Local slopes of the damage survival probability~d! in
the B model, for p50.62, 0.63, 0.632, 0.634, 0.65~curves from
bottom to top!. Statistical averaging was done over 10 000 samp
e
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As one can see both the kink and spin damage concen
tion show a scaling with2b/n'520.25, while the fluctua-
tions have a slopeg/n'50.5, all agreeing with the corre
sponding exponents@37# in the DP universality class. For th
critical dynamical exponentZ5n i /n' DP-like scaling has
been found for both the spin and kink damage cases. Fit
can be done withL1.5798 ~DP value! in both cases.

IV. GRASSBERGER A MODEL

Another very similar model exhibiting parity conservatio
of kinks is the GrassbergerA stochastic cellular automaton

t21: 100 001 101 110 011 111 000 01
t: 1 1 0 12p 12p 0 0 1

The time evolution pattern in 111 dimensions, for smallp
evolves towards a stripelike ordered steady state~with
double degeneration!, while for p.pc@50.1245(5)# the
kinks ~the 00 and 11 pairs! survive. Forp50 we have the
Rule-94, class 1 CA, while thep51 limit is the chaotic
Rule-22 deterministic CA. Therefore we can expect a da

FIG. 4. Local slopes of the Hamming distance~h! in the A
model, forp50.130, 0.132, 0.134~curves from bottom to top!. The
simulations were started from the random initial state. Statist
averaging was done over 63105 samples.s.

FIG. 3. Finite size scaling results for the spin and kink dama
for the B model. The diamonds correspond to the kink dama
concentration, the squares to the fluctuations of it. The crosses
respond to the spin damage concentration, thex’s to the fluctuations
of it. Triangles and stars denote characteristic timest of the spin
and the kink damage cases. Averaging was done over 500 surv
samples.
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5172 57GÉZA ÓDOR AND NÓRA MENYHÁRD
age spreading phase transition betweenp5pc and p51
~damages always heal or survive in the ordered ste
states!.

A. Kink damage results

First two replicas of lattices of the same random init
distributions but a single spin-flip difference condition we
followed. As the local slope figure~Fig. 4! of theD(t) shows
the DS transition point@pd50.133(1)# seems to be slightly
off the critical point @pc50.1242(5)#. One can read offh
50.31(1), which is close to the DP universality class val
@hDP50.314(3)#, but for the survival probability we go
nearly zero exponent~Fig. 5!. The survival probability scal-
ing with d;0 contradicts the DP scaling and one may spe
late that we can see a finite time effect. We extended
same time dependent simulations up totmax528 000 for cer-
tain p values, but there were no sign of change in the ab
results. To check the transients the evolution of the k
concentration starting from a disordered state has been
lowed on aL58192 lattice. As Fig. 6 shows there is a ve
long relaxation in this model, and the steady state has b
reached following 23106 MC time steps only. Therefore
time dependent simulations from steady state initial con
tions have been performed. The initial states now were c
sen to be the outcomes of runs following 53106 time steps
for different p s, with the usual single spin-flip difference

FIG. 5. Local slopes of the damage survival probability~d! in
the A model, for p50.130, 0.132, 0.134~curves from bottom to
top!. The simulations were started from the random initial sta
Statistical averaging was done over 104 samples.

FIG. 6. Evolution of the kink concentration in theA model (L
58192) started from random initial state atp50.124.
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Now we can see dramatic changes. First, the DS point mo
to the critical point@pd50.1242(1)# ~see Fig. 7!.

The correspondinghk exponent is around zero, whic
agrees with that of the PC universality class. In case of
survival probability we could use the conventional no
multi-spin coding algorithm with much less statistics. St
one can read off the same transition point with the va
d;0.285~8! ~Fig. 8!, which is again in the PC class.

Thus we can see the emergence of PC behavior, whic
in accordance with the BAWe conservation of kink-dama
variables and theZ2 degeneration of the absorbing sta
arises from the fact thatpc and pd coincided. Note that the
statistical errors are larger now than in theB model case,
when the DS simulations were carried out not in the imm
diate neighborhood of the critical point.

B. Spin damage results

The parity of the spin damage variables is not conser
in this case. When the simulations were started from rand
initial states we obtained the same DS transition point a
case of the kink-damage case, but with neither DP nor
universality class values. The simulations have been d
both with conventional and multispin code algorithm. The
resulted in the results for the spin damage Hamming dista

.

FIG. 7. Local slopes of the Hamming distance (hkink) in the A
model, for p50.123, 0.124, 0.125, 0.126~curves from bottom to
top! in the case of steady state initial condition. Averaging w
done over 33105 independent samples.

FIG. 8. Local slopes of the survival probability~d! in the A
model, forp50.123, 0.124, 0.1245, 0.125~curves from bottom to
top! in case of steady state initial condition. Averaging was do
over 50 000 independent samples.
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57 5173DAMAGE SPREADING FOR ONE-DIMENSIONAL, . . .
shown in Fig. 9. For the survival probability we obtained
nearly zerod exponent, as in the case of kink damage; s
Fig. 10. These results are quite confusing again, espec
the exponenth50.52(1), which does not belong to the (1
11)-dimensional DP or to the PC class. We cannot giv
better explanation for this, that the very long transients p
vented the healing of damages and the possibility to see
‘‘true’’ scaling behavior.

Indeed, if the simulations were started from near
steady state the results become very different. The DS t
sition point seems to coincide with the critical point@pc

50.1242(5)# and we could get a spin-damage concentrat
exponent:hs50.29(2), which is close to theh850.285(5)
of the PC scaling~Fig. 11!.

The results for the survival probability (ds) andzs coin-
cided with that of the kink-damage case, which can be
derstood by the following. Although theoretically to ea
spin-damage absorbing state can correspond two k
damage absorbing states~by flipping all spins of one rep-
lica!, simulations showed that the kink and the spin dam
died out always at the same time. In the case of the sprea
one can easily check that theR2 measurements should giv
the same results for both kink and spin damage cases
cause the beginning and the end of the perturbed region

FIG. 9. Local slopes of the Hamming distance~h! in the A
model, for p50, 125, 0, 127, 0.130, 0.132, 0.134~curves from
bottom to top!. The simulations were started from the random sta
Statistics over 100 000–500 000 samples.

FIG. 10. Same as above for the survival probability.
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almost the same. Indeed the simulations resulted in the s
PC-like z @z51.14(1)# exponent in both cases~Fig. 12!.

C. Finite size scaling for both cases

The finite size scaling simulations were performed at
DS transition point (pd50.1242) for system sizesL
564,128, . . .1024. The necessary time steps to reach ste
state weret510 000,20 000, . . . respectively. The resu
can be seen in Fig. 13.

In the case of the kink damage one can see regular
like scaling for the concentration2bk /n'520.5, the fluc-
tuations of itgk /n'50, and for the critical dynamical expo
nent Zk5n i /n'51.75. In the case of the spin damage w
can see a constant 0.5 steady state concentration for all
tem sizes, resulting inbs /n'50 as in the case of the pur
Glauber Ising model atT50 and the NEKIM model at the
PC transition point. In agreement with this and Fisher’s sta
scaling law

g5dn'22b ~12!

the fluctuations of it exhibit a linear scaling law (gs /n'

51), whereas the scaling of the characteristic time is
scribed by what was found in the case of the pure NEK
model at the PC transition point for the spin variables@27#.

.

FIG. 11. Local slopes of the Hamming distance (hs) in the A
model, forp50, 124, 0, 1245, 0.126~curves from bottom to top!.
The simulations were started from steady state. Averaging was
33105 samples.

FIG. 12. Local slopes ofR2(t) (z) in the A model, for p50,
124, 0, 1245, 0.125, 0.126~curves from bottom to top!. The simu-
lations were started from steady state. Averaging was done ov
3104 independent run.
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5174 57GÉZA ÓDOR AND NÓRA MENYHÁRD
V. NEKIM MODEL

The PC universality appears in a class of nonequilibri
dynamic Ising models where the kinks corresponding to
and 10 domain walls evolve according to the BAWe ru
@19#. The dynamics is composed of the alternating appli
tion of ~i! a zero temperature spin flip lattice update:

wi5
G

2
~11dsi 21si 11!S 12

g

2
si~si 211si 11! D , ~13!

whereg5tanh 2J/kT ~J denoting the coupling constant i
the Ising Hamiltonian!, G andd are further parameters resul
ing in random walk, annihilation of kinks;~ii ! and a spin-
exchange lattice update:

wii 115 1
2 pex@12sisi 11#, ~14!

where pex is the probability of spin exchange, resulting
kink →3 kink creation.

The spin-flip part has been applied using two-sublatt
updating, whileL MC spin-exchange attempts has been do
randomly using the outcome state of the spin-flip part.
these together have been counted as one time step o
change updating.@Usual MC update in this last step en

FIG. 14. Local slopes of the spin damage concentration~h!, for
p50.386, 0, 39, 0.392, 0.395, 0.4~curves from bottom to top!.
Statistical averaging was done over 20 000–40 000 samples.

FIG. 13. Finite size scaling results for the spin and kink dam
for the A model. The diamonds correspond to the spin dam
concentration, the squares to the fluctuations of it. The crosses
respond to the kink damage concentration, the3’s to the fluctua-
tions of it. Triangles and stars denote characteristic timest of the
spin and the kink damage cases. Averaging was done over
surviving samples.
1
s
-

e
e
l
ex-

hances the effect ofpex and leads todc520.362(1).# In
@19,27# we have started from a random initial state and d
termined the phase boundary in the (d,pex) plane. The phase
space is composed of an active phase with free kinks an
absorbing, ordered phase without kinks provided the ini
state has an even number of kinks. They are separated
second order phase transition line of PC universality. To
vestigate the damage spreading properties we have chos
fix G50.35, pex50.3, and changed ~that will play the role
of p now!. The PC critical point has been determined p
cisely @38#: dc520.395(2).

A. Time dependent simulations

Time dependent simulations up totMAX 58192 were per-
formed and we found that the DS transition point coincid
with dc within statistical errors. The simulation results no
were less sensitive whether we started from random in
state or from steady state. For the spin damage density
obtainedhs50.29(1) when we started from steady state,
in the case of theA model. @If we started from the random
initial state hs50.38(2) scaling appeared at thedc point.#
This is shown in Fig. 14.

The Hamming distance measurements for kinks resu
in h;0 in accordance with the PC universality class va
~Fig. 15!. The survival probability simulation gave the sam

FIG. 15. Local slopes of the kink damage concentration (hk),
for p50.385, 0, 39, 0.395, 0.40.405~curves from bottom to top!.
Statistical averaging was done over 100 000 samples.

FIG. 16. Local slopes of the damage spin and kink survi
probability ~d!, for p50.385, 0, 39, 0.395, 0.40.405~curves from
bottom to top!. Statistical averaging was done over 100 0
samples.
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results for spin and kink damage cases, namely, they
PC-like; see~Fig. 16!. As in case of theA model the simu-
lations resulted in the same PC-likez @z51.14(1)# ~see Fig.
17! exponent in both cases, because the spin and kink d
age regions start and stop approximately at the same s
This can be observed on Figs. 18 and 19, where we plo
the time evolution patterns of spin and kink damages of
same run.

One can see that the boundaries of the perturbed reg
are the same, but the spin-damage pattern is compact, c
ing the higherhs8 exponent.

B. Finite size scaling

Finite size scaling simulations were performed at the
transition point (pd50.395) for system sizes L
564,128, . . .,2048. The necessary time steps to reach ste
state weret57000,14 000,. . . ,200 000, respectively. Figur
20 summarizes the results. The kink concentration show
nice scaling withbk /n'50.5, while the fluctuations had n
pronounced slope on the log-log plot, suggestinggk /n'

50. Both of these values are in agreement with the PC u
versality class. The spin damage concentration is cons
@c50.50(1)# meaningbs /n'50.0 similarly to theA-model
case. A linear scaling withgs /n'51 could be fitted for the
fluctuation of it, meaninggs5n' . This means that the ex
ponents are in agreement with Fisher’s scaling law@Eq. ~12!#
again. For the critical dynamical exponentZ5n i /n' PC-like

FIG. 18. Time evolution of the spin damage in the NEKI
model near the DS transition point.

FIG. 17. Local slopes ofR2 of spin damage (z), for p50.39,
0.395, 0.4~curves from bottom to top!. Statistical averaging was
done over 100 000 samples.
re
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scaling has been obtained for both the spin and kink dam
cases. As Fig. 20 shows fitting can be done withL1.75 ~PC
value! in both cases. The deviation from DP scaling law c
clearly be seen in the figure too. It is reasonable to assu
that the scaling behaviors are inherited from the p
NEKIM model.

VI. CONCLUSIONS

The damage spreading behavior of three one-dimensio
nonequilibrium models, exhibiting a parity conserving pha
transition has been investigated numerically. TheA SCA
model of Grassberger has been found to be very sensitiv
the initial conditions of the DS simulations. Acceptab
results—which are in good agreement with that of t
NEKIM model—can be found only when the DS simulatio
are started from steady state.

When the DS transition point coincided~within statistical
error! with the ordinary critical point of the model~NEKIM,
A model! interesting things have happened on both the s
and the kink damage level.

In the case of theB model the DS transition point wa
found to be far away from the critical point and all exponen
~on spin and kink damage level equally! show DP universal-
ity class behavior independently of the parity conservation
damage variables.

FIG. 19. Time evolution of the kink damage in the NEKIM
model near the DS transition point.

FIG. 20. Finite size scaling results for the NEKIM model. Th
crosses correspond to kink damage concentration, the squares
fluctuations of it. The stars correspond to spin damage concen
tion, diamonds to the fluctuations of it. The triangles and the3’s
correspond to the kink and spin damage characteristic times~t!.
Averaging was done over 500 surviving samples. The intermed
dotted line shows a DP-like scaling law fort.
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Tables II and III summarize the simulation results for t
transition points and DS exponents of the models inve
gated as well as DP and PC critical exponent estimates f
Refs.@18,27,37#.

The h8 is the PC exponent when the BAWe process
started from an odd number of particles. The CPC nota
denotes the compact version PC universality class in ana
with the CDP in the case of DP universality. The conclusio
of this paper are in agreement with previous works conce
ing PC to DP universality changes~for example,@24,27,31#!.
It is also in agreement with the recent DS study of Hinric
senet al. @32#, because when they obtained a PC class
transition in the case of the one-dimensional kinetic Is
model they created a mixed dynamics, which satisfies b
the BAWe parity conservation~i.e., they followed the kinks!
and the symmetric ground state condition~i.e., they gener-
ated passive states by ‘‘switching’’ between two dynam
that results in double degeneration: no damage versus
damage!. In our case it has never happened that one rep
would became completely reflection symmetric to the oth
The simple dynamical rules always have driven the state
the same sector, where spin and kink damages died ou
multaneously.

One may assume this scheme to be valid for non-DS
namical transitions too, if the model has multiple absorb
states~with or without Z2 symmetry!. This hypothesis is

TABLE II. Kink damage results.

NEKIM GR-A GR-B DP PC

pc 0.395~5! 0.1242~5! 0.539~1!

pd 0.395~5! 0.1242~5! 0.633~1!

h 0.03~3! 0.03~3! 0.31~2! 0.3137~1! 0.0000~1!

d 0.28~1! 0.285~8! 0.160~2! 0.1596~4! 0.285~2!

z 1.14~1! 1.14~1! 1.2660~1! 1.141~2!

Z 1.74~3! 1.75~8! 1.59~4! 1.5798~2! 1.750~5!

b/n' 0.500~6! 0.48~2! 0.27~2! 0.2522~6! 0.500~5!

g/n' 0.07~1! 0.1~1! 0.5 0.4956~2! 0.00~5!

Univ. PC PC DP
.
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strengthened by simulations of the pure NEKIM model at
PC transition point. Starting the time dependent simulatio
from a single seed we measured the usualh andd exponents
of the spins. In accordance with the DS results we obtai
PC exponents again:h850.285(5), d50.285(5). A detailed
study of CPC for the spins in the framework of NEKIM an
its connection to the CDP point of Domany-Kinzel CA
under way@33#.

These exponents satisfy the generalized hyperscaling
@13# with b50:

2S 11
b

b8D d812h85dz, ~15!

whereb8 is the ultimate survival probability exponent. No
that the discontinuous phase transition, the compact clus
~see Fig. 18!, and the form of the hyperscaling law sugges
that our case is the parity conserving version of comp
directed percolation@29,39,40#.
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TABLE III. Spin damage results.

NEKIM GR-A GR-B DP PC

pc 0.395~5! 0.1242~5! 0.539~1!

pd 0.395~5! 0.1242~5! 0.633~1!

h8 0.29~1! 0.29~2! 0.32~2! 0.3137~1! 0.285~2!

d 0.28~1! 0.285~8! 0.160~2! 0.1596~4! 0.285~2!

z 1.14~1! 1.14~1! 1.2660~1! 1.141~2!

Z 1.75~1! 1.79~5! 1.48~9! 1.5798~2! 1.750~5!

b/n' 0.0001~1! 20.001(1) 0.26~2! 0.2522~6! 0.500~5!

g/n' 1.00~7! 0.98~6! 0.46~4! 0.4956~2! 0.00~5!

Univ. CPC CPC DP
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